
DevOps 101
with Atlassian

CONTENTS

What is DevOps?

DevOps and Atlassian

Building Products, DevOps Style

Continuous Delivery for Infrastructure

Handling Incidents at Atlassian

It’s Time for Your DevOps Story

3

6

9

16

24

28

3

What is DevOps?

Five years ago, Marc Andreesen proclaimed that software is eating
the world. After all, what company isn’t a software company? Case
in point:

• Modern cars contain hundreds of millions of lines of code—far more
than all of Facebook, from Zuckerberg’s dorm years to today.

• Even pizza delivery has gone high tech. With advanced mobile
applications for placing orders and tracking deliveries, Dominos Pizza
has increased its IT workforce by 240%.

• Nike is turning footwear into a fully connected platform by integrating

Old-school development models just don’t hold up to such
high-demand, high-growth environments. Traditionally, Development
and Operations teams work separately in silos, hindering the ability
to move fast. The response to this contentious relationship was a
movement called DevOps. It’s a fancy phrase for a simple idea: your
dev and ops teams work better together. It advocates for better

4

DEVOPS 101 WITH ATLASSIAN

Companies that practice
DevOps are twice as
likely to exceed their
goals for pro�tability
and market share.
Puppet Labs’ 2015 State of DevOps Report

“

communication and collaboration so that developing, testing, releas-
ing, and running software can happen more rapidly and reliably.

Instead of delivering big, infrequent releases (once every 3 to 9
months) like traditional development teams at major enterprises,
DevOps takes a “continuous delivery” approach. This means
releasing small, incremental improvements regularly—often even
several times per day.

The results are enormous, and go far beyond the operational.

They also enjoy:

• 30x more frequent deployments

• 60% higher change success rates

• 60x fewer failures

• 160x faster recoveries

These results aren’t limited to major enterprises with billion-dollar
dev teams, either. You can achieve them yourself, no matter how
small your team is. The #1 success factor is teamwork. At Atlassian,
the key to faster, higher quality releases is a strong relationship
between your dev and ops teams, and the right tools and processes
in place to support them.

So what does that look like at Atlassian, and how did we get start-
ed?

P R O T I P

The #1
success factor
is teamwork

“The #1 success factor is teamwork. At Atlassian, the key to faster, higher
quality releases is a strong relationship between your dev and ops teams, and

the right tools and processes in place to support them.”

6

DevOps and Atlassian

Cristophe Capel
Head of Product
Marketing, JIRA
Service Desk

At some major big box retailers, really heavy items have “team lift”
stickers on them to indicate when several employees need to help
move the items from shelf to shopping cart. “Team lift” is actually a
perfect analogy for the entire DevOps methodology, since DevOps
isn’t any single person’s job—it’s everyone’s job.

At Atlassian, we use our own products to understand our uses, and
provide additional testing before we release them to our customers.
In short, we dogfood our own products.

In this ebook, we’ll cover each step in detail, and exactly how we use
each Atlassian solution. For now, let’s start with our process, which
looks a bit like a hot tasty pretzel:

1. First, we plan the features we will deliver to our customers. We use

2. Then, we build the software—writing code and running tests until
we get it right. Bitbucket lets us create branches for each new feature
we need to create, and it also allows us to code more collaboratively,

7

DEVOPS AND ATLASSIAN

since we can use pull requests to facilitate faster reviews, and com-
ment inline and hold conversations between our developers right within
the code.

A cool feature we love: When a developer creates a pull request
-

3. We continuously integrate new features back into a master branch
for deployment. Bamboo makes this easier, helping us automate
builds, tests, and releases along the way. It really speeds up deploying

4.
branches, builds, pull requests, and deployment warnings, so we can

5. Once we’ve deployed a new feature into production, it’s time to run

knowledge base articles, and related documentation at every step.

6. We deliver continuous feedback (via reports, tickets, etc.) to our
-

Desk, we can even request customer feedback from both internal and
external users.

Throughout the entire lifecycle, HipChat is the secret salty coating to
our pretzel. It adds an additional layer of collaboration on top of our
already collaborative processes and technology by letting our teams
swarm on incidents, wherever they are, via desktop, mobile apps,
and even wearables.

That’s just the basics, though, and you came here for details. So
let’s dive in.

P R O T I P

 DevOps isn’t
any single

person’s job
—

it’s everyone’s job.

9

Tanguy Crusson
Product Manager,
HipChat

Building Products,
DevOps style
Let’s say you’re engineering team has gone Agile. They work in
sprints, collaborate, and are building a lot of great features. But
there’s just one catch: you still have to wait for the release train to
leave the station, and customers aren’t getting value fast enough.

We’ll show you our best practices for building products, DevOps
style. Let’s start with feedback; because no matter the product, your
success is solely based on your users.

How to gather feedback—and use it to shape and build features

We’ve learned over the years that the easiest way to make our prod-
uct better is to listen to the people that use it. Thousands of compa-
nies use HipChat, and thousands of Atlassian use it internally, too.

You can collect feedback from just about every source imaginable.

•

•

• Monitor social media channels like Twitter and Facebook

•

response times

• Gather monitoring data from third par-

What do we do with all that feed-
back? Here’s what we do with it:

10

BUILDING PRODUCTS, DEVOPS STYLE

get a ton of tweets:

We route them, along with all
our other social media mentions,
bug reports, etc. into dedicated
HipChat rooms where the whole

-
tion and help shape our backlog.

hey @hipchat, any news
about deeper JIRA
integration? issue links!
Eric Wood @ejwood79

Important feedback, like bugs, is then converted into a JIRA Soft-
ware ticket—which we then prioritize into the backlog. If there’s a

goals and requirements.

In either case, we make sure to always listen to our customer feed-
back, wherever they are, and take action when possible.

Plan together in sprints

So, how exactly do we plan what we’re going to build?

Our small development teams regroup and meet for an hour every
week. We use the hour to:

• Demo everything that was built in the previous week to keep the
team informed and connected.

•
week and agree on whether we achieved them.

• -

that you have to be able to demo to the team, or ship to production at
the end of the sprint.

After the meeting, we break out. With our new objectives in hand,
our developers can go through all the issues in our backlog and pick
out the ones that will help us achieve the sprint objectives we took
on during the meeting.

11

BUILDING PRODUCTS, DEVOPS STYLE

The end result is complete buy-in from the team. Everyone is fully

and how we are dividing the work.

Spike early and often

You’re probably familiar with the term “spike” in agile development.

early obstacles, and guesstimate the size of initiatives. Instead of
building a shippable product, we focus on end-to-end prototyping,
to arm us with the knowledge we need to get the job done right.

At the end of each spike, we have a better idea of the size and
technical obstacles we will encounter for each initiative, and we
categorize them: Extra Small, Small, Medium, Large, Extra Large, or
Godzilla.

We regularly rotate between normal sprints and spikes, and hold
regular “innovation weeks” that result in really amazing prototypes
and insights around project scope and approach. Most teams at
Atlassian hold innovation weeks, too, and they love to write about
them.

12

BUILDING PRODUCTS, DEVOPS STYLE

Keep even the biggest changes small

Instead of shipping big things infrequently, ship small changes very
often. It makes it very easy to roll back a particular change if we

very fast.

For really big changes—like highly anticipated new features, for
example—we still take a “start small” approach, setting “step by
step” goals and running frequent A/B tests and experiments to see
what our users like best.

Instead of shipping big
things infrequently, ship
small changes very often.

“
To test, we divide our users into
cohorts. For example, cohort A
might see one version of a HipChat
feature, and cohort B might see a

at the usage data to see which
version of the feature is performing

iterating and testing until we get to the best version of that feature.

A tool we use during these testing phases is Launch Darkly, which
lets us release new features to small segments of users, gather
feedback, and then gradually increase the audience size until we’ve
fully deployed. We often start with just 5% of users running the new
feature—and then slowly increase by 10 or 15 percent increments
after each feedback and revision cycle.

13

BUILDING PRODUCTS, DEVOPS STYLE

Git + Bitbucket + Bamboo = automated awesome

We’re heavy users of Git and Bitbucket, using feature branches to

small, translates into a feature branch, which is automatically tested
via our Bamboo builds.

After we test a feature branch, we create a pull request to merge it
back to the master branch, and we select a minimum of two review-
ers from our team to review and verify the code. Once you get a
green build and 2 approvals, you’re good to go.

Since our master branch is what gets shipped to production, we
require that the master be “green”—no known bugs, issues, or
errors—at all times. If a build goes “red,” that means all hands on

Encourage accountability

our ownership model. We’re big on “you build it, you ship it, you run
it”, meaning the team that is responsible for writing a feature also
becomes the team responsible for deploying it and providing ongo-
ing maintenance once it’s live.

But isn’t that going to introduce a lot of issues in production? In fact
it’s quite the contrary: It encourages every developer to build the
very best version of something, and gives each of us a vested inter-
est in its ongoing success.

What this leads to is 100+ developers being able to ship to produc-
tion at any point in time. This is made possible with the right process

14

BUILDING PRODUCTS, DEVOPS STYLE

and especially the right tools. We use Chef and Puppet for automa-
tion, and developed a number of Chat Apps (HipChat add-ons) to
help us coordinate this process.

Finally, accountability for us also means keeping our users informed

have the potential to impact all of our users. We love StatusPage.io
for keeping everyone up to date on the status of all of our services.

P R O T I P

We’re big on “you build it, you ship it, you run it”, meaning
the team that is responsible for writing a feature also becomes
the team responsible for deploying it, and providing ongoing

maintenance once it’s live.

We’re big on
“you build it,
you ship it,
you run it”

16

Continuous Delivery
for Infrastructure

Michael Knight
Build Engineer,
Atlassian

It’s not just development teams that can use DevOps practices. You

work, too. At Atlassian, we’ve built a team of a dozen employees
(called Build Engineers) that are dedicated to helping our develop-
ers code faster, by giving them the best hardware and infrastructure
services possible. We oversee our continuous integration service
(Bamboo), our artifact storage and retrieval service (Sonotype Nex-

services that glue them together and provide a smooth experience
to our dev teams.

Let’s take a deeper dive into the technology and processes we de-
pend on, and my top tips for running a Build Engineering team more

Gather feedback from developers

Our customers are Atlassian’s developers. We used JIRA Service
Desk to create our own engineering service desk, and that’s how
they contact us to submit requests and provide us with feedback.

17

CONTINUOUS DELIVERY FOR INFRASTRUCTURE

“Walk the board” during standups

Each morning, we have standups just like most software dev teams,

in JIRA Software. Each issue is categorized as:

We set a maximum threshold for the number of issues that can be
in each status column. Below, you’ll see a few columns that have

that column before we pick up anything new.

TO DO

READY

IN PROGRESS

REVIEW

MERGE

ROLLOUT

18

CONTINUOUS DELIVERY FOR INFRASTRUCTURE

Pull requests: swarms, approvals and keeping things green

matter how small, exactly the same way that our software devel-
opment colleagues do. Every single pull request is linked to a JIRA
issue, and we manage the pull requests in Bitbucket, requiring two
approvals from our colleagues (plus a green feature branch build) to
move forward.

Our team also has a HipChat room where we wrote a bot to keep
track of all our pull requests. It shows all open pull requests, and
how close they are to being merged. We leave it up to the team to
swarm over the pull requests and jump in and provide feedback for

works really well to move us through the pipeline faster and knock
out our in-process work.

So HipChat, JIRA Software, JIRA Service Desk, and Bitbucket are a
big part of our day-to-day operations.

19

CONTINUOUS DELIVERY FOR INFRASTRUCTURE

Favorite Pipeline Tools

You might be wondering what tools to use for handling software,

favorites:

model to install the SSH keys from everyone on our team.

Vagrant lets us spin up test servers easily, which we apply Puppet

really well, and the combination makes it really easy to test new

agents are installed properly, and that the changes we have made
haven’t broken anything.

new Puppet tree out to production, and HipChat will automatically

working in production, and to also close the issue in JIRA.

As always, Bamboo shows the status of the build, and the details
of each release, like which environments it’s been deployed to, and
which JIRA issues are addressed in each build and release.

Software Pipeline
Just like our software develop-
ment team, we use Bamboo on
the infrastructure side, to man-
age and run our build plans
and deployments. We use
Bamboo to manage Puppet,
where we write new modules

-
ponents on our servers, like a

20

CONTINUOUS DELIVERY FOR INFRASTRUCTURE

Hardware pipeline
Bamboo manages everything
in our hardware pipeline as

we make heavy use of Amazon
Web Services (AWS), we use
Terraform to manage our hard-
ware infrastructure. We love it

to make changes to our hardware.

For example: Changes we request to our hardware infrastructure

deployed through a continuous delivery pipeline—the same process
our software developers have to follow for their work. This keeps us
consistent about how we manage quality across the board.

Here’s a quick example of what Terraform code looks like, just in
case you’re curious:

Here, we’re basically setting up a new NAT server on AWS. We use
code to set all the parameters, like subnet, etc. We can feed an

the API calls it needs to make to AWS to change our server topogra-

21

CONTINUOUS DELIVERY FOR INFRASTRUCTURE

can ask Terraform to execute the plan and make those changes. It’s
magical.

We track all of these releases with Bamboo, just like we do our
software. Bamboo deploys each Terraform release into our staging

ready. Bamboo is also used to see which releases have been de-
ployed across what environments.

Three core concepts to remember

Nothing changed the game more for our team than the idea of
“infrastructure as code.” It’s allowed us to adopt software develop-

management, and it’s greatly improved the stability of our platform.
Doubling the number of servers dedicated to running Bamboo at
Atlassian was pretty much the same amount of work as just adding

Our team follows three basic principles that pretty much any engi-
neering team can adopt:

1. Automate everything
It’s critical that our builds work. If we don’t test them thoroughly, we

-
uous delivery possible for us.

reduce human error and make sure we don’t miss important tasks.

Finally, with more automation, we can keep our team smaller. That
means less communications overhead, and more speed—which is
exactly our team’s charter.

2. Stay focused on continuous delivery

sure our developers can get their work done. So we follow continu-
ous delivery best practices, just like they do:

• OUR CODE IS ALWAYS RELEASABLE
Our master is always “green” and stable, so it can be released at any
time.

22

CONTINUOUS DELIVERY FOR INFRASTRUCTURE

• WE RELEASE FREQUENTLY
This reduces risk, since there are only small changes from release to
release, and we can revert easily as needed.

• WE FOCUS ON FAST VALUE DELIVERY
-

quickly as possible.

As a result, we’re able
to perform 10x more
builds, without adding
a single person to our
engineering team.

“ 3. Embrace infrastructure
as code

Simply put, this just means that we
-

ure servers, apps, and more instead
-

We can literally use code to hammer out commands like “give me N

As a result, we’re able to perform 10x more builds, without adding a
single person to our engineering team. We can deploy with far high-

P R O T I P

With more
automation, we

can keep our
team smaller.

That means less
communications

overhead, and
more speed.

24

Nick Wright
Head of Service
Operations,
Atlassian

Handling incidents
at Atlassian
But what about when things aren’t working as planned—like when
a feature rolls out that isn’t performing optimally? That’s where our
Service Operations team comes in. Our job is to make it easier to

the future.

We use ITIL as the basic framework for our service management
practice. It gives us a standard set of terminology and processes

-
cally, ITIL provides a strong foundation for how to classify incidents,

and more.

Let’s take a look at how Atlassian handles incidents when the poop
(or anything else, really) does eventually hit the fan.

1. Someone (or something) reports the incident
We learn about system outages and other potential performance
glitches in two ways:

•

• Our monitoring systems (like Cacti, DataDog, Zabbix, and Nagios)

25

HANDLING INCIDENTS AT ATLASSIAN

2. We aggregate the alerts into HipChat
We aggregate all of our incident alerts into a single stream in a Hip-
Chat room, so our teams get directly informed that there is a prob-
lem. This can sometimes generate noise, so we turn to tools like Big-
Panda to help out. BigPanda correlates massive amounts of IT alerts
and events, and helps group them together, saving us a ton of time.

3. We create an incident ticket
Occasionally, a team may know the outage was caused by a change
they just made, and they can quickly disable that change. But more
often than not, we need to pull a team together to troubleshoot and

Service Desk.

To create a ticket, we enter a few details, like a short name and de-
scription of the vent, and then categorize each incident by the im-
pact it could have on a service, the number of users impacted, and
how urgently it should be handled.

4. We notify our users
We use StatusPage.io to communicate with internal and external stake-
holders, and push updates with incident status at regular intervals.

26

HANDLING INCIDENTS AT ATLASSIAN

5. We create a dedicated chat room and swarm to resolve
the incident
Within the incident ticket in JIRA Service Desk, we use the “create
a room” feature to move the conversation to a dedicated HipChat
room and pull in the right team to solve the problem at hand. The
team discusses what went wrong, and agrees on an approach for

6. We resolve and categorize the root cause
ITIL recommends that we categorize each issue (bug, license expi-

the root cause and taken corrective action. We also document the
correction actions we took as well, and can use all of this informa-
tion to run detailed reports highlighting our most common incident
types and more. This helps us to take a more preventative approach
to incident and problem management.

7. Finally, we conduct a post-mortem and document what
went wrong
Possibly the most critical step to resolving an incident is learning

-
-

layout, and it’s easy to get started quickly. JIRA, on the other hand,

27

HANDLING INCIDENTS AT ATLASSIAN

post-incident review process, and allow us to track each post-mor-
tem review through to completion.

We’ve used both successfully. More important than the technol-
ogy you use in the post-mortem process is making sure that you
are able to develop a good understanding of the root cause of your
outage. Use that to take the right set of actions to prevent the same
outage from occurring again.

• CAPTURE THE DATA WHILE IT’S FRESH IN YOUR MIND

through the entire incident report process, complete with target time-
frames for each step.

• MAKE SURE YOU DOCUMENT EVERYTHING IN YOUR KNOWLEDGE BASE

ensure we keep getting smarter (and sharing the knowledge) along the
way.

• AUDIT YOUR RESULTS REGULARLY

resolving incidents and of documenting the results.

standardized approach to incident and problem management, we’ve
reduced our mean-time-to-diagnosis from 113 minutes to just 23
minutes—and we’re committed to cutting it even more.

In this ebook, we’ve given you a quick glimpse at how Atlassian
-

ware development teams use continuous development practices,
and how our Build Engineering team follows those very same guide-

tools both teams use to increase our throughput and quality, and
we even looked at how standardized frameworks like ITIL help us to

arise at Atlassian.

DevOps is powering your business. The more unique, the better.

28

It’s Time for Your
DevOps Story

Submit your story

Explore our tools for DevOps

